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The influence of boundary conditions on the frequency characteristics of a
rotating conical shell is studied using the Galerkin method. The results obtained
include the relationships between the frequency parameter and circumferential
wavenumber and between the frequency parameter and rotating velocity at
various cone angles under different boundary conditions. The variation of the
frequency characteristics at various vibrational modes is also shown. In order to
validate the present analysis, several comparisons of the numerical results with
those published are made. One comparison is for an infinitely long rotating
cylindrical shell; other comparisons are for the non-rotating conical shells. As is
expected, these comparisons show very good agreement.
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1. INTRODUCTION

There are many engineering applications resulting from studies involving the
vibration of rotating shells, such as in the high-speed centrifugal separators, the
drive shafts of gas turbines, motors and rotor systems. However, since Bryan [1]
discovered the travelling-mode phenomenon in his study of a rotating cylinder,
research on rotating shells has been mainly on the vibration of rotating cylindrical
shells. Some of the earlier researches were conducted by Di Taranto and Lessen
[2], Srinivasan and Lauterbach [3] and Huang and Soedel [4]. Recent studies
include the work done by Chun and Bert [5] and Chen et al. [6]. The first author,
Lam, has also carried out extensive studies on the vibration of both rotating and
non-rotating cylindrical shells. He used beam functions to study the effect of
boundary conditions on the frequency characteristics for a non-rotating
multi-layered cylindrical shell [7], and carried out a comparative study on different
thin shell theories for rotating laminated cylindrical shells [8]. He also carried out
studies on the rotating laminated composite [9] and rotating sandwich-type
cylindrical shells [10]. However, most of the studies on the rotating cylindrical shell
were limited to the simply-supported boundary condition. Only a few studies
covered other boundary conditions. They included those of Saito and Endo [11],
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Rand and Stavsky [12] and the present authors [13]. By studying a finite length
rotating cylindrical shell under different boundary conditions, Saito and Endo [11]
found that the boundary conditions have a significant influence on the frequency
characteristics of the rotating shell. Rand and Stavsky [12] also studied similar
problems. The present authors [13] used a new global approximate numerical
technique called as the generalized differential quadrature (GDQ) method to
discuss the effects of three boundary conditions on the frequency characteristics
of a rotating cylindrical shell.

Although the dynamic behaviour of a rotating cylinder has been studied for over
a century, few studies on rotating conical shells have been made. They include the
work of the present authors [14] and Sivadas [15]. In reference [14], only
simply-supported boundary conditions were considered. The effects of geometric
properties of rotating conical shells were presented, including length-to-radius
(L/a) and thickness-to-radius (h/a) ratios and so on. However, in both papers, no
study on the influence of boundary conditions was made. For non-rotating conical
shells, there are many papers discussing the influence of boundary conditions on
the frequency characteristics. Earlier studies were conducted by Bacon and Bert
[16], Irie et al. [17] and Kayran and Vinson [18], while recent studies were carried
out by Sivadas and Ganesan [19, 20], Thambiratnam and Zhuge [21] and Tong
[22, 23]. For example, Irie et al. [17] listed the natural frequencies of isotropic
conical shells under nine boundary conditions. Kayran and Vinson [18] studied
the frequency characteristics of composite conical shells for eight boundary
conditions. Tong [22, 23] also studied a similar problem.

In order to study the influence of boundary conditions on the frequency
characteristics of truncated circular rotating conical shells, the present paper
presents an approach combining the Galerkin method for the free vibration of
rotating conical shells with, respectively, the clamped–clamped (C–C) and
simply-supported–simply-supported (S-S) boundary conditions. Having con-
sidered the effects of initial hoop tension and centrifugal and coriolis accelerations
due to the rotation, this paper focuses on the influence of boundary condition on
the relationships between frequency parameter and circumferential wavenumber,
and between frequency parameter and rotating velocity. The variations of the
frequency characteristics of rotating conical shells at various cone angles, rotating
velocities and vibrational modes are also discussed. To examine the accuracy of
the present analysis, comparisons are made against the results in the open
literature for an infinitely long rotating cylindrical shell and non-rotating conical
shells with respectively C–C and S–S boundary conditions. As is shown, very good
agreement is obtained.

2. FORMULATIONS

Figure 1 shows the geometry and co-ordinate system for a truncated circular
conical shell rotating about its symmetrical and horizontal axis at an angular
velocity V. In this figure, a is the cone angle, L the length, h the thickness, and
a and b are the radii at the two ends. The reference surface of the conical shell
is taken to be at its middle surface where an orthogonal co-ordinate system
(x, u, z) is fixed, and r= r(x) is a radius at any co-ordinate point (x, u, z). The
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deformations of the rotating conical shell in the meridional x, circumferential u
and normal z directions are defined by u, v and w, respectively.

Using a linear approximation, Chen et al. [6] established the general equations
for the vibration of a rotating shell of revolution. Based on these equations, by
transforming their curvilinear co-ordinate system into the orthogonal co-ordinate
systems and then imposing the geometric properties of rotating conical shells on
the equations, the governing equations of motion can be derived for a truncated
circular rotating conical shell as follows:
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Figure 1. The geometry of a rotating truncated circular conical shell.
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T 1

Comparison of frequency parameter f=vbz((1− m2)r/E for an infinitely long
rotating cylindrical shell (m=1, m=0·3, a/b=1, h/b=0·002)

Chen et al. [6]* Present results
ZXXXXXCXXXXXV ZXXXXXCXXXXXV

V (r.p.s.) n fb ff fb ff

0·05 2 0·00167 0·00142 0·00170 0·00145
3 0·00448 0·00429 0·00450 0·00431
4 0·00848 0·00833 0·00850 0·00835
5 0·01370 0·01353 0·01367 0·01355

0·1 2 0·00180 0·00130 0·00189 0·00139
3 0·00457 0·00419 0·00465 0·00428
4 0·00855 0·00826 0·00863 0·00834
5 0·01371 0·01347 0·01379 0·01355

* From equation (45) of Chen et al. [6]:

fb = 2n
n2 +1 V+Xn2(n2 −1)2

n2 +1
Eh2

r(1− m2)12r2 + n4 +3
(n2 +1)2 V2,

ff = 2n
n2 +1 V−Xn2(n2 −1)2

n2 +1
Eh2

r(1− m2)12r2 + n4 +3
(n2 +1)2 V2.

Subscripts b and f denote the backward and forward waves, respectively.

Here,

r=
1
h g

h/2

−h/2

r*(x, u, z) dz, (4)

T 2

Comparison of frequency parameter f=vbz(1− m2)r/E for non-rotating conical
shell with S–S boundary condition (m=1, m=0·3, h/b=0·01, L sin a/b=0·25)

a=30° a=45° a=60°
ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

n Present Irie [16] Present Irie [16] Present Irie [16]

2 0·8420 0·7910 0·7655 0·6879 0·6348 0·5722
3 0·7376 0·7284 0·7212 0·6973 0·6238 0·6001
4 0·6362 0·6352 0·6739 0·6664 0·6145 0·6054
5 0·5528 0·5531 0·6323 0·6304 0·6111 0·6077
6 0·4950 0·4949 0·6035 0·6032 0·6171 0·6159
7 0·4661 0·4653 0·5921 0·5918 0·6350 0·6343
8 0·4660 0·4654 0·6001 0·5992 0·6660 0·6650
9 0·4916 0·4892 0·6273 0·6257 0·7101 0·7084
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T 3

Comparison of frequency parameter f=vbz(1− m2)r/E for
non-rotating conical shell with C–C boundary condition (m=1,

m=0·3, h/b=0·01, L sin a/b=0·5)

a=45° a=60°
ZXXXXXCXXXXXV ZXXXXXCXXXXXV

n Present Irie [16] Present Irie [16]

1 0·8452 0·8120 0·6449 0·6316
2 0·6803 0·6696 0·5568 0·5523
3 0·5553 0·5430 0·4818 0·4785
4 0·4778 0·4570 0·4361 0·4298
5 0·4395 0·4095 0·4202 0·4093

r= r(x)= a+ x sin a, (5)

N0
u = rhV2r2 = rhV2(a+ x sin a)2, (6)

where r*(x, y, z) is the density at any point and r is the average density in the
z direction at any point; N0

u is defined as the initial hoop tension because of the
centrifugal force effect; NT = {Nx , Nu , Nxu} and MT = {Mx , Mu , Mxu} are the force
and moment vectors and can be obtained from the following general constitutive
relationship of a conical shell,

6N
M7=$AB B

D%6ek7, (7)

where A=[Aij ], B= [Bij ] and D=[Dij ] (i, j=1, 2, 6) are tensile, coupling and
bending stiffness matrixes; eT = {e1, e2, e12} and kT = {k1, k2, k12} (the subscripts 1
and 2 denote the meridional and circumferential directions) are the strain vector
and the curvature vector of the reference surface, respectively. The strain and

curvature at the reference surface can be defined by the following geometric
relationship for the deformations of the reference surface,
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Substituting equations (8) into equation (7) and then substituting the resulting
equation into governing equations (1)–(3), a set of partial differential governing
equations expressed by the displacements u, v and w can be derived as follows:

L11u+L12v+L13w=0,

L21u+L22v+L23w=0,

L31u+L32v+L33w=0, (9)

where Lij (i, j=1, 2, 3) are the differential operators and are given in the
Appendix.

If a=0 and r(x)= a= b are taken into equation (9), the governing equations
for the motion of a rotating conical shell are transformed into the equations for

Figure 2. Variation of the frequency parameter f with the circumferential wavenumber n for cone
angle a=5° (m=1, m=0·3, h/a=0·02, L/a=20). V (r.p.s.): —q——, 0 (S–S); —(—, 0 (C–C);
— ·q—, 4 (S–S); – t

r—–, 4 (C–C); —.· —, 16 (S–S); —t· —, 16 (C–C). —— Backward wave; – – –,
forward wave.
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Figure 3. Variation of the frequency parameter f with the circumferential wavenumber n for cone angle a=15°
(m=1, m=0·3, h/a=0·02, L/a=20). V (r.p.s.): —q——, 0 (S–S); —(—, 0 (C–C); — ·q—, 4 (S–S); – t

r—–, 4 (C–C);
—.· —, 16 (S–S); —t· —, 16 (C–C). —— Backward wave; – – –, forward wave.

the rotating cylindrical shell. The transformations show that the expression of Lij

(i, j=1, 2, 3) for the rotating conical shell is much more complicated than that
of a rotating cylindrical shell. It should also be noted that Lij of the rotating conical
shell is a differential operator with variable coefficients and thus is a function of
the co-ordinate variable x, while Lij of a rotating cylindrical shell is a differential
operator with constant coefficients and thus is unrelated to variable x.

In addition, for the case of a rotating cylindrical shell, by using some simple
trial functions such as equations (16) (see later), the eigensolution can be obtained
directly [10]. For the case of a rotating conical shell, however, when using a similar
function, the governing equations must be worked out first with approximate
approaches such as the Galerkin method before the eigensolution is obtained. The
above descriptions are the main differences between the vibrational analyses of the
rotating conical and cylindrical shells. They are also the main reasons why the
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vibrational analysis of a rotating conical shell is much more difficult and
complicated than that of a rotating cylindrical shell.

If V=0 is taken into equations (9), the governing equations for the motion of
a rotating conical shell are transformed into the equations for the non-rotating
conical shell. Substituting the trial function into the resulting governing equations
and then performing the approximation process, the eigenvalue equation of the
non-rotating conical shell can be obtained and simplified as

2v2&R11

0
0

0
R22

0

0
0

R33'+ &T11

T21

T31

T12

T22

T32

T13

T23

T33'38UVW9= 80009, (10)

Figure 4. Variation of the frequency parameter f with the circumferential wavenumber n for cone angle a=30°
(m=1, m=0·3, h/a=0·02, L/a=20). V (r.p.s.): —q——, 0 (S–S); —(—, 0 (C–C); — ·q—, 4 (S–S); – t

r—–, 4 (C–C);
—.· —, 16 (S–S); —t· —, 16 (C–C). —— Backward wave; – – –, forward wave.
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Figure 5. Variation of the frequency parameter f with the circumferential wavenumber n for cone
angle a=45° (m=1, m=0·3, h/a=0·02, L/a=20). V (r.p.s.): —q——, 0 (S–S); —(—, 0 (C–C);
— ·q—, 4 (S–S); – t

r—–, 4 (C–C); —.· —, 16 (S–S); —t· —, 16 (C–C). —— Backward wave; – – –,
forward wave.

where v (rad/s) is the natural circular frequency of the present conical shell; U,
V and W are the functions of vibrational modes as shown in later equations (13)
and (16); and Rii and Tij are the coefficients in terms of the material elastic constants
and geometric parameters. Equation (10) is a standard eigenvalue equation so that
the eigensolution of free vibration for non-rotating conical shells can be obtained
directly by a general eigenvalue approach.

However, for the rotating conical shell, after substituting the same trial function
into the governing equation and using similar approximation process, the
eigenvalue equation can be derived and simplified as
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where Rii , Tij , Sij are also similar coefficients expressed by the material elastic
constants and geometric parameters. As shown in equation (11), it is a
non-standard eigenvalue equation; hence the eigensolution of a rotating conical
shell cannot be obtained directly unless some transformations are performed
mathematically. This is the main difference and the main implementation problem
between the vibrational analyses of rotating and non-rotating conical shells.

So far the derivation of the partial differential governing equations (9) is general
and hence it can be used for the dynamic analysis of a rotating truncated circular
conical shell with arbitrary boundary conditions. In this paper, however, only
isotropic conical shells with respectively C–C and S–S boundary conditions are
considered.

Figure 6. Variation of the frequency parameter f with the circumferential wavenumber n for cone
angle a=60° (m=1, m=0·3, h/a=0·02, L/a=20). V (r.p.s.): —q——, 0 (S–S); —(—, 0 (C–C);
— ·q—, 4 (S–S); – t

r—–, 4 (C–C); —.· —, 16 (S–S); —t· —, 16 (C–C). —— Backward wave; – – –,
forward wave.
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Figure 7. Variation of the frequency parameter f with the rotating velocity V (r.p.s.) for cone angle
a=5° (m=1, n=2, m=0·3, h/a=0·01, L/a=15). —(—, a=5° (S–S); – t

r—–, a=5°, (C–C). ——,
Backward wave; – – –, forward wave.

For the clamped boundary condition at both ends (C–C), namely,

u=0, v=0, w=0,
1w
1x

=0, at x=0,L, (12)

the displacement field can be taken as

u=U sin 0mpx
L 1 cos (nu+vt), v=V sin 0mpx

L 1 sin (nu+vt).

w=W 0sinh 0lmx
L 1−sin 0lmx

L 1+ gm0cosh 0lmx
L 1−cos 0lmx

L 111 cos (nu+vt).

(13)
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Here lm and gm should satisfy the following conditions

cos lm · cosh lm =1, gm =
sinh lm −sin lm

cos lm −cosh lm
(m=1, 2, . . .). (14)

For the following simply-supported boundary condition at both ends (S–S):

v=0, w=0, Nx =0, Mx =0 at x=0, L, (15)

and hence the displacement field can be taken as

u=U cos 0mpx
L 1 cos (nu+vt), v=V sin 0mpx

L 1 sin (nu+vt),

w=W sin 0mpx
L 1 cos (nu+vt). (16)

Figure 8. Variation of the frequency parameter f with the rotating velocity V (r.p.s.) for cone angle
a=15° (m=1, n=2, m=0·3, h/a=0·01, L/a=15). —(—, a=15° (S–S); – t

r—–, a=15° (C–C).
——, Backward wave; – – –, forward wave.
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Figure 9. Variation of the frequency parameter f with the rotating velocity V (r.p.s.) for cone angle
a=30° (m=1, n=2, m=0·3, h/a=0·01, L/a=15). —(—, a=30° (S–S); – t

r—–, a=30° (C–C).
——, Backward wave; – – –, forward wave.

In equations (13) and (16), v (rad/s) is the natural circular frequency of the present
rotating conical shell, and m and n are the integers representing respectively the
meridional and circumferential wave numbers of the rotating shell.

Obviously, the trial functions given by equations (13) can satisfy accurately all
the C–C boundary conditions given by equations (12). The trial functions given
by equations (16) satisfy accurately the geometric boundary conditions but satisfy
only approximately the force boundary conditions in the S–S boundary conditions
given by equations (15). However, as the comparisons in Tables 2 and 3 have been
shown, the error due to the approximation is acceptable. Moreover, the trial
functions given by equations (13) and (16) are simple in form and convenient in
implementation; hence they are useful for the present complicated partial
differential governing equations.
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As is described above, since the governing equations (9) are a set of partial
differential equations with variable coefficients, they cannot be solved analytically.
Instead, the present paper uses the Galerkin method to obtain an approximate
solution. For governing equations (9), the weighted-integral statement of the
Galerkin method can be expressed as follows:

gt gu gx

(L11u+L12v+L13w)du dx du dt=0,

gt gu gx

(L21u+L22v+L23w)dv dx du dt=0,

gt gu gx

(L31u+L32v+L33w)dw dx du dt=0. (17)

Figure 10. Variation of the frequency parameter f with the rotating velocity V (r.p.s.) for cone angle a=45°
(m=1, n=2, m=0·3, h/a=0·01, L/a=15). —(—, a=45° (S–S); – t

r—–, a=45° (C–C). ——, Backward wave;
– – –, forward wave.
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Figure 11. Variation of the frequency parameter f with the rotating velocity V (r.p.s.) for cone
angle a=60° (m=1, n=2, m=0·3, h/a=0·01, L/a=15). —(—, a=60° (S–S); – t

r—–, a=60°
(C–C). ——, Backward wave; – – –, forward wave.

Substituting the trial functions given by equations (13) or (16) into the
weighted-integral statement given by equations (17) depending on the boundary
condition, the eigenvalue equation of the rotating conical shell is obtained in the
following matrix form:

&C11

C21

C31

C12

C22

C32

C13

C23

C33'8UVW9= 80009. (18)

Here the coefficients Cij (i, j=1, 2, 3) are very complicated and are long
expressions in terms of frequency, material elastic constant and geometric
parameter. One example of this, namely, C11 can be found in Lam et al. [14] by
using the trial functions (16) for the S–S boundary condition.
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Eigenvalue equation (18) may be solved by imposing the non-trivial condition
and then setting the determinant of the characteristic matrix equal to zero, namely,

nC11

C21

C31

C12

C22

C32

C13

C23

C33n=0. (19)

Expanding the determinant (19), a polynomial equation of v is obtained

d0v
6 + d1v

5 + d2v
4 + d3v

3 + d4v
2 + d5v+ d6 =0, (20)

where di (i=0, 1, 2, . . . , 6) are constants. The six roots in equation (20) can be
solved by using the Newton–Raphson procedure. The two roots for which the
absolute values are the smallest are the eigensolutions discussed. A bifurcation
phenomenon exists in the present vibrational analysis. Namely, for the

Fig. 12(a).
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Fig. 12(b).

Figure 12. Variation of the frequency parameter f with the rotating velocity V (r.p.s.) at various
vibrational modes (m=0·3, a=45°, h/a=0·02, L/a=20). (a) —(—, m=1, n=2 (S–S); — ·q—,
m=1, n=2 (C–C); – t

r—–, m=2, n=2 (S–S); —t· —, m=2, n=2 (C–C). (b) —(—, m=1, n=4
(S–S); — ·q—, m=1, n=4 (C–C); – t

r—–, m=2, n=4 (S–S); —t· —, m=2, n=4 (C–C). ——,
Backward wave; – – –, forward wave.

non-rotating conical shell, these two eigenvalues are identical; for the rotating
conical shell, they are real numbers, one positive and other negative. They
correspond respectively to the backward and forward travelling waves or to the
positive and negative rotating velocities.

3. RESULTS AND DISCUSSION

To examine the accuracy of the present analysis, three comparisons are made
against the results in the open literature. The first comparison, as shown in Table
1, is for an infinitely long rotating cylindrical shell by taking a=0 into the present
formulations. The second, as shown in Table 2, is for a non-rotating conical shell
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with S–S boundary condition by taking V=0 into the present formulations. The
third, as shown in Table 3, is for a non-rotating conical shell with C–C boundary
condition by taking V=0, similarly. For ease of comparison and discussion, a
non-dimensional frequency parameter is defined as follows:

f=vbX(1− m2)r
E

. (21)

The above three comparisons show very good agreement between the present
computed results and those in the open literature and thus indicate the accuracy
of the present work.

In the present discussion on the influence of the boundary conditions on
frequency characteristics, three studies were presented for the free vibration of
rotating truncated circular conical shells. The first, as shown in Figures 2–6, studies
the influence of boundary conditions on the relationship between the frequency
parameter f and the circumferential wavenumber n at various rotating velocities.
The second, as shown in Figures 7–11, studies the influence of boundary
conditions on the relationship between the frequency parameter f and the rotating
velocity V for various cone angles. The third, as shown in Figures 12(a) and (b),
studies the influence of boundary conditions on frequency characteristics at
various vibrational modes.

In the figures, the backward wave is represented by a solid line and the forward
wave by a dashed line; the unit for the rotating velocity V is r.p.s. (revolutions
per second or Hz). The results are presented for the clamped boundary condition
at both ends (C–C) and simply-supported boundary condition at both ends (S–S).

Taking the geometric properties h/a=0·02 and L/a=20, Figures 2–6 show the
variations of the frequency parameter f against the circumferential wavenumber
n for the free vibration of the rotating truncated circular conical shells under the
C–C and S–S boundary conditions. These five figures correspond to the five
different cone angles, namely, a=5°, 15°, 30°, 45° and 60°, and at three different
rotating velocities, V=0, 4 and 16 r.p.s. For the case of the non-rotating conical
shell, i.e., V=0, it can be seen from the figures that there is a significant difference
between the frequency parameters of small cone angles corresponding to the C–C
and S–S boundary conditions; this difference decreases with increasing cone angle.
For the case of the rotating conical shell, it should be noted that similar results
also occur. The frequency parameter f increases with increasing rotating velocity
V for the given circumferential wavenumber n; the frequency parameter f also
increases with increasing circumferential wavenumber n at a given rotating velocity
V. It should also be noted that, as the circumferential wavenumber n increases,
the difference of the frequency parameters between the C–C and S–S boundary
conditions decreases for the given rotating velocity V; the difference also decreases
with increasing rotating velocity V for a given circumferential wavenumber n.
Therefore, it can be concluded that there is an influence of the boundary conditions
on the relationship between the frequency parameter f and circumferential
wavenumber n. This influence becomes significant for the small cone angle, or
small circumferential wavenumber n or low rotating velocity. However, as
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circumferential wavenumber n or the cone angle a increases, such influence tends
to become insignificant for the given rotating velocity.

Taking the geometric properties h/a=0·01, L/a=15 and circumferential
wavenumber n=2, Figures 7–11 show the variation of the frequency parameter
f against the rotating velocity V for the free vibration of the rotating truncated
circular conical shells with the C–C and S–S boundary conditions. These five
figures correspond to the five different cone angles, namely, a=5, 15, 30, 45 and
60°. From these figures, it can be seen that the frequency parameter f increases
with an increase in rotating velocity V for both C–C and S–S boundary conditions.
The difference of the frequency parameters between the C–C and S–S boundary
conditions is also larger for the smaller cone angle, while as the cone angle
increases, the difference becomes small. Therefore, it can be concluded that
boundary conditions have a significant effect on the relationship between
frequency parameter f and rotating velocity V; this influence is significant when
the cone angle of the conical shell is small. However, with the increase of the cone
angle, the influence will become insigificant.

Taking the geometric properties h/a=0·02, L/a=20 and the cone angle
a=45°, Figure 12(a) and (b) show the variations of the frequency parameter f
against the rotating velocity V at various vibrational modes (m, n) for the C–C
and S–S rotating conical shells, where m and n are the meridional and
circumferential wavenumbers. From the two figures, it can be seen that the
difference of the frequency parameters between the C–C and S–S boundary
conditions for mode (2, 2) is much larger than that of mode (1, 2). Similarly, the
difference of the frequency parameters for mode (2, 4) is also much larger than that
of mode (1, 4). In addition, it should be noted that for the S–S boundary condition,
the absolute value of the frequency parameter f of the backward wave is always
larger than that of the forward wave. The difference of frequency parameters
between the backward and forward waves generally increases with an increasing
rotating velocity V. However, for the C–C boundary conditions, similar trends can
only be observed in the low-order vibrational mode such as (1, 2) or (1, 4). In the
high-order vibrational mode such as (2, 2), (2, 4) or even higher-order mode, the
difference of frequency parameters between backward and forward waves is small
and tends to vanish. From the above studies, it can be concluded that the
boundary conditions significantly affect the variation of the frequency parameter
f against the rotating velocity V, and such influence becomes more significant for
the higher-order vibrational mode.

4. CONCLUSIONS

Taking into account the initial hoop tension and the centrifugal and coriolis
accelerations, the present paper presents a method to study the influence of the
boundary conditions on the frequency characteristics of a rotating truncated
circular conical shell. The present study is for the rotating isotropic conical shells
with the C–C and S–S boundary conditions. The computed results are obtained
for the frequency characteristics at various cone angles, rotating velocities and
vibrational modes. From the results obtained, it is found that the boundary
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conditions have an influence on the frequency characteristics of the free vibration
for a rotating truncated circular conical shell. Such influence is more significant
in the case of a small circumferential wavenumber, or low rotating velocity, or
small cone angle or higher-order vibrational mode. However, such influence
becomes small for a large circumferential wavenumber, or high rotating speed, or
large cone or lower-order vibrational mode. The present numerical formulations
and implementations are found to be accurate and reliable when compared with
results in the open literature for an infinitely long rotating cylindrical shell and
non-rotating isotropic conical shell under C–C and S–S boundary conditions.
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APPENDIX
The differential operators Lij (i, j=1, 2, 3) defined in equations (9) can be

written as:

L11 =−A22 sin2a
r2(x) − rh 12

1t2 +0 A66

r2(x)+V2rh1 12

1u2 +
(A11 +A12 −A21) sin a

r(x)
1
1x

+2A16

r(x)
12

1x 1u
+A11

12

1x2, (A1)

L12 =
2(B16 +B26) cos a sin2 a

r3(x) +A26 sin2 a
r2(x) +2Vrh sin a

1
1t

−0(B12 +B22 +2B66) cos a sin a
r3(x) + (A22 +A66) sin a

r2(x) 1 1
1u

+0B26 cos a
r3(x) + A26

r2(x)1 12

1u2 −02(B16 +B26) cos a sin a
r2(x) +A26 sin a

r(x) 1 1
1x

+0(B12 +2B66) cos a
r2(x) + (A12 +A66)

r(x) 1 12

1x 1u

+0A16 +
2B16 cos a

r(x) 1 12

1x2 , (A2)

L13 =−A22 cos a sin a
r2(x) −02(B16 +B26) sin2 a

r3(x) −A26 cos a
r2(x) 1 1

1u

+(B12 +B22 +2B66) sin a
r3(x)

12

1u2 −
B26

r3(x)
13

1u3

+0B22 sin2 a
r2(x) +A12 cos a

r(x) −V2rhr (x) cos a1 1
1x

+ (2B16 +B26) sin a
r2(x)

12

1x 1u
−(B12 +2B66)

r2(x)
13

1x 1u2

− (B11 +B12 −B21) sin a
r(x)

12

1x2 −
3B16

r(x)
13

1x2 1u
−B11

13

1x3, (A3)
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L21 =−
B26 cos a sin2 a

r3(x)
+

A26 sin2 a

r2(x)
−2Vrh sin a

1

1t

+0(B22 −B66) cos a sin a

r3(x)
+

(A22 +A66) sin a

r2(x)
+V2 rh sin a1 1

1u

+0B26 cos a

r3(x)
+

A26

r2(x)1 12

1u2 +0B26 cos a sin a

r2(x)
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(2A16 +A26) sin a

r(x) 1 1

1x

+0V2rhr (x)+
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r2(x)
+

(A21 +A66)
r(x) 1 12

× 1x 1u+0A16 +
B16 cos a

r(x) 1 12

1x2 , (A4)

L22 =
4D66 cos2 a sin2 a

r4(x)
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B66 cos a sin2
a

r3(x)
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A66 sin2 a

r2(x)
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12

1t2
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r4(x)
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r3(x) 1 1

1u

+0D22 cos2 a

r4(x)
+

2B22 cos a

r3(x)
+
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r2(x)1 12

1u2
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r3(x)
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r2(x)
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A66 sin a

r(x)
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1x
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L23 =−
B26 cos2 a sin a

r3(x)
+
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